
Microservices and DevOps

DevOps and Container Technology
Continuous Delivery/Deployment

Henrik Bærbak Christensen



An opinion…

CS@AU Henrik Bærbak Christensen 2



Agile Manifesto

• Highest priority is to satisfy the customer through early 

and continuous delivery of valuable software.

• Hence ‘continuous delivery’ was coined as term…

CS@AU Henrik Bærbak Christensen 3



The Sources

• Sam Newman

– (2nd Edition Sep 2018)

• Michael T Nygard

• Jez Humble et al.

• Eberhard Wolff

CS@AU Henrik Bærbak Christensen 4



Why Continuous Delivery

Rephrased Talk by Jez Humble



Source

• This is a slidification of Jez Humble / Continuous Delivery

talk in 2012…

– https://www.youtube.com/watch?v=skLJuksCRTw

CS@AU Henrik Bærbak Christensen 6



Deliver Frequently

• Deliver frequently because it ensures:

• 1. Build the right thing

• 2. Reduce risk of release

• 3. Real project progress

CS@AU Henrik Bærbak Christensen 7



1: Built the Right Thing



Wasted Time

• More than 50% of functionality in SW is rarely or never used!

CS@AU Henrik Bærbak Christensen 9



Build the Right Thing

• Steve Jobs: You can’t ask customers what they want. By 

the time you deliver, they want something new…

– Henry Ford: They would have asked for faster horses…

• Problem solved: Scientific method

– Create hypothesis We make this cool feature

– Deliver MVP Minimum Viable Product

– Get feedback Reject/Approve was it cool?

– (repeat)

• Morale: Do not ask, run experiments and measure

CS@AU Henrik Bærbak Christensen 10



Science

CS@AU Henrik Bærbak Christensen 11



Lead Time

• Optimize our software delivery process

– Lead Time: Time from 

• ‘one single line edited in code’ (or cool feature made)

• to

• ‘running in production, delivering value to customers’

• Question:

– Do you know the lead time in your organization?

– In case you do, what is it?

CS@AU Henrik Bærbak Christensen 12



2: Reduce Risk of Release

‘Release’ as in ‘Users use it’



Release Frequently

• Large release every 3-6 months

– Lots of stuff means lots of stuff can go wrong

• Akin to ‘Big Bang Integration’

• Small release every 4-8 hours

– Small amount of stuff means easy to trace root cause

– And you practice releasing – you get good at it

CS@AU Henrik Bærbak Christensen 14



Monitoring

• Does something go wrong?

– ‘Crash and burn’ are obvious, but…

• Throughput lowered by 0.8 % by defect in code

• Customer’s actually buy something lowered by 8%

• Service x crashes 50% more often

• Monitoring production systems is crucial

– (Area that I have little practical large-scale 

experience with )

– Example: Nagios, ELK, Humio, …

CS@AU Henrik Bærbak Christensen 15



Availability Measure

• Mean Time Between Failure MTBF

– The BMW

• Never fails (but really expensive when it does)

• Mean Time to Restore Service MTRS

– The Jeep

• Fails often (but really fast and easy to repair)

• Continuous Delivery strives to improve MTRS

– (Do not use it for space aircraft software ☺)

CS@AU Henrik Bærbak Christensen 16



Example: Uber

• uDeploy and uOrchestrate

CS@AU Henrik Bærbak Christensen 17



3: Real Project Progress



Windows Progress Metaphor

• The good old Windows progress bar

– Spent 8 seconds to reach 95%

– Spent 15 minutes to reach the last 5%

• So what does it mean to a project manager that 

developers state that the software is 90% finished?

– If it is just development that is 90% done

• Never tested with users, never tested with real sized database 

contents, never tested with 10.000 concurrent users, never tested for 

…

• Humble: “Done” versus “Done done”

• Nygard: “feature complete versus production-ready”

CS@AU Henrik Bærbak Christensen 19



Real Project Progress

• Burn down chart
– http://brodzinski.com/2012/10/burn-up-better-burn-down.html

• Time graph

– Scope on Y

• Will evolve up (or down)

– Time on X

– Plot ‘features in production’

• Blue line = real live features

• Dotted red = projection

CS@AU Henrik Bærbak Christensen 20

http://brodzinski.com/2012/10/burn-up-better-burn-down.html


Summary

• Do it, in order to 

• 1. Build the right thing

– Fast feedback from users, focus attention to aspects that deliver 

value to them

• 2. Reduce risk of release

– Release often means you get very good at it

– Release often means broken release is easier to roll back, and 

easier to find the defect

• 3. Show real project progress

– “Done” is not “Done-Done”

• Feature made = Done. Feature used = Done-Done 

CS@AU Henrik Bærbak Christensen 21



Terminology

I find it muddles a bit…



Terminology

• Writing these slides, I found that I actually use terms like

– Deploy, Release, Delivery, Production

• … in a rather unprecise way 

– I deploy SkyCave? I release SkyCave? Put SkyCave in prod.?

• … (and authors seems to mix it up a bit as well)

• So – What do you mean by

– Release x? Deploy x? Deliver x?

CS@AU Henrik Bærbak Christensen 23



Humble: CD

CS@AU Henrik Bærbak Christensen 24

Deploy

Source: Merriam Webster online dictionary

Release



So…

• Deploy service

– Bring it in an executable form into a given environment

• Which may be a testing env or a production env

– (normally also means ‘and start its execution’)

• Release service

– Make its features available to the ‘public’ (customers)

• Which (almost) equate ‘deploy and start it on production env’

– Deliver ?

• (unless the feature is ‘toggled off by a feature toggle’)

CS@AU Henrik Bærbak Christensen 25

https://www.martinfowler.com/articles/feature-toggles.html



Release is not Release

• Perhaps because I am an old-school guy…

• In the old days release meant

– Tag a release tag onto a specific version and call that ‘the one to 

use’

– Ala ‘upgrade your build.gradle to include frds.broker, v 1.14’

• Different from this notion of release…

– “Push release” versus “Pull release” ?

CS@AU Henrik Bærbak Christensen 26



Newman Part II

• (Newman: “Monolith to MicroService”, p 80)

– Deployment does not mean accessible by customers (!)

• I.e. not released; may run with no user load in production

– Released does not mean deployed in production (!)

• i.e. we have only released it in staging, for testing

• Martin Schmidt’s Master’s Thesis, p 22

CS@AU Henrik Bærbak Christensen 27



The Pipeline Again

Just adding stages…



Pipeline

• Deployment Pipeline: An automated implementation of 

your application’s build, test, deploy and release process.

• Every change that is made in any artefacts of the 

application triggers the creation of a new instance of the 

pipeline.

– Series of tests, each more demanding, each giving confidence in 

that it will work. Passing all tests means ready for release.

CS@AU Henrik Bærbak Christensen 29



Production-Ready Software

• Automation of (almost) everything

– Software is put into production by the ‘push of a button’

– Software is always working (that is, services customers!)

• Collaboration

– DevOps

– Full stack developers

CS@AU Henrik Bærbak Christensen 30



Deployment Pipeline

• Deployment like a Processor pipeline

– Like our hero passing a series of test to marry the princess

CS@AU Henrik Bærbak Christensen 31

Jenkins, Concourse, Go, etc.

That is, a clear set of 
stages, moving towards 

valuable software



What Artefacts?

• Software service customers

– What is the ‘unit of deployment’?

– What is the ‘execution context’?

• Units of deployment

– Ruby gems, Java jars and war, .NET dlls, Node.js npm, … 

– Ubuntu deb, CentOS RPM, Windows MSI, …

• Execution context

– Apache tomcat, nagios, nginx, …

CS@AU Henrik Bærbak Christensen 32

Both need automation!



Containers - as Artifacts

• The artefacts we use: Containers

• Ex: Docker container

– Provides execution context

• Ex: Ubuntu 18.04, Java8, Gradle

– Provides unit of deployment

• Ex: Cave daemon service

• Can be automatically built

– Dockerfile

• Can be released easily

– Docker push (imagename)

CS@AU Henrik Bærbak Christensen 33

Execution 
context

Unit of 
deployment

Service start



Immutable Servers

• Reusing servers leads to Configuration drift

• Configuration drift: The configuration settings in a given 

immutable version in our SCM does not match those in 

effect on our running host.

– Typically, someone logged into the host and changed some 

parameters by fiddling

• Solution: Running servers are always the result of a 

deployment pipeline operation.

– Error in config? No fiddling, but fix configuration file, check-in, 

instantiate deployment pipeline!

CS@AU Henrik Bærbak Christensen 34



Nygard

• … says the very same

• Immutable and Disposable Infrastructure: Start from a 

known base image, apply fixed set of changes, and then 

never attempt to patch or update that machine. 

• Right, not always possible

– Example: Crunch machine needs configuring the Docker engine’s 

network creation algorithm 

CS@AU Henrik Bærbak Christensen 35



Again: Container Technology

• Do not security-patch a

container

– Instead, make a pipeline

stage that produce the

base image…

• Following stages will then

produce the service

container, based up the

updated base image

CS@AU Henrik Bærbak Christensen 36

Jenkins enabled JDK8+Gradle



Environments and Configuration

• The execution environment must be configurable

– Development environment Unit Tests

• Use test doubles for fast development of new features

• Fast unit-test execution

– Staging environment Service Tests, Journeys

• Drilled down production-like environment

– No firewall, fewer services

– Docker images, created by TestContainers

– Mountebank imposters instead of certain services

– Production environment

• Solution: Create one artifact and manage configuration 

separately

CS@AU Henrik Bærbak Christensen 37



Example

• SkyCave

– Dependency injection using AbstractFactory+ObjectMgr patterns

• Reading CPF property files

• Other recommendations

– Environment variables (is cross platform, but reuse difficult)

• And JUnit code cannot set it directly

– Injection frameworks (Spring, Guice, “Bærbak CPF ☺”…)

CS@AU Henrik Bærbak Christensen 38



Deployment Interface

• Newman’s mantra: … the most sensible way to trigger 

any deployment is via a single, parameterizable 

command-line call.

• Three parameters

– Artifact what service to deploy

– Version … in which version

– Environment … in which service configuration ?

• $ deploy artifact=ts17d environment=production version=b456

• docker run –d hbc/ts17d:b456 –Pcpf=production.cpf

CS@AU Henrik Bærbak Christensen 39



Humble

• Humble says something along the same lines…

CS@AU Henrik Bærbak Christensen 40



Deployment Interface

• But how does it relate to IaC?

• Infrastructure-as-code

– Codify your infrastructure

• Exercise:

• Compare deployment interface

– Artifact?

– Version?

– Environment?

CS@AU Henrik Bærbak Christensen 41



Discussion

• So – the question is…

– Is a deployment interface the same as IaC

– If not

• Benefits of deployment interface?

• Liabilities?

• Benefits of IaC?

• Liabilities?

CS@AU Henrik Bærbak Christensen 42



A GUI Depl-Intf: Rancher

CS@AU Henrik Bærbak Christensen 43

Point’n’Click hell



PhoenixServer

• Fowler: PhoenixServer

– Burn all you production 

equipment, and then measure the 

time until you are completely back 

in normal operations

CS@AU Henrik Bærbak Christensen 44


