/v

AARHUS UNIVERSITET

Microservices and DevOps

DevOps and Container Technology
Continuous Delivery/Deployment

Henrik Baerbak Christensen

/v An opinion...

AARHUS UNIVERSITET

If you are not
embarrassed by the
first version of your

product, you've
launched too late.

g

REID HOFFMAN

FOUNDER, LINKEDIN

CS@AU Henrik Beerbak Christensen 2

/v Agile Manifesto

AARHUS UNIVERSITET

« Highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

* Hence ‘continuous delivery’ was coined as term...

/v

AARHUS UNIVERSITET
e Sam Newman

— (2M Edition Sep 2018) S oseLVIoes

* Michael T Nygard

« Jez Humble et al.

 Eberhard Wolff

CS@AU

The Sources

OREILLY

Building

S

Henrik Baerbak Christensen

Release It!
Second Edition

Design andd Deploy
Pracuction Ready Software

L

e

A PRACTICAL GU

CONTINUOUS |
DELIVERY

/v

AARHUS UNIVERSITET

Why Continuous Delivery

Rephrased Talk by Jez Humble

eV Source

AARHUS UNIVERSITET

e This is a slidification of Jez Humble / Continuous Delivery
talk in 2012...

— https://www.youtube.com/watch?v=skLJuksCRTw

CS@AU Henrik Baerbak Christensen 6

/v Deliver Frequently

AARHUS UNIVERSITET
* Deliver frequently because it ensures:

« 1. Build the right thing
2. Reduce risk of release

« 3. Real project progress

/v

AARHUS UNIVERSITET

1: Built the Right Thing

eV Wasted Time

AARHUS UNIVERSITET

« More than 50% of functionality in SW is rarely or never used!

CS@AU Henrik Baerbak Christensen 9

/v Build the Right Thing

AARHUS UNIVERSITET

« Steve Jobs: You can’t ask customers what they want. By
the time you deliver, they want something new...
— Henry Ford: They would have asked for faster horses...

 Problem solved: Scientific method

— Create hypothesis We make this cool feature

— Deliver MVP Minimum Viable Product

— Get feedback Reject/Approve was it cool?
— (repeat)

* Morale: Do not ask, run experiments and measure

/v

AARHUS UNIVERSITET

CS@AU

Science

The Scientific Method as an Ongoing Process

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,
or reading.

Develop
General Theories

General theories must be
consistent with most or all
available data and with other
current theories.

Think of
Interesting

Questions
Why does that
pattern occur?

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to

Formulate
Test Predictions

Hypotheses
Relevant data can come from the What are the general
literature, new observations, or causes of the

formal experiments. Thorough
testing requires replication to
verify results.

phenomenon | am
wondering about?

Develop
Testable
Predictions

If my hypotesis is correct,
then | expect a, b, c,...

Henrik Baerbak Christensen 11

VeV Lead Time

AARHUS UNIVERSITET

e Optimize our software delivery process

— Lead Time: Time from
* ‘one single line edited in code’ (or cool feature made)
* to
* ‘running in production, delivering value to customers’

e Question:
— Do you know the lead time in your organization?
— In case you do, what is it?

/v

AARHUS UNIVERSITET

2. Reduce Risk of Release

‘Release’ as in ‘Users use it’

/v Release Frequently

AARHUS UNIVERSITET

* Large release every 3-6 months

— Lots of stuff means lots of stuff can go wrong
« Akin to ‘Big Bang Integration’

 Small release every 4-8 hours
— Small amount of stuff means easy to trace root cause

— And you practice releasing — you get good at it

/v Monitoring

AARHUS UNIVERSITET

* Does something go wrong?

— ‘Crash and burn’ are obvious, but..
* Throughput lowered by 0.8 % by defect |n code s
« Customer’s actually buy something Iowered by 8% :
» Service x crashes 50% more often : ,_’

« Monitoring production systems is crucial

— (Area that | have little practical large-scale
experience with ®)

— Example: Nagios, ELK, Humio, ...

/v Availability Measure

AARHUS UNIVERSITET

« Mean Time Between Failure MTBF

— The BMW
* Never fails (but really expensive when it does)

« Mean Time to Restore Service MTRS

— The Jeep
+ Fails often (but really fast and easy to repair)

CS@AU Henrik Beerbak Christensen 16

/v

AARHUS UNIVERSITET

Example: Uber

« uDeploy and uOrchestrate DC1 & DC2

CS@AU

Prod1
(5% total)

fanual Ack | Monitoring
Required Period

Prod2
(20% total)

Monitoring
Period

Prod3
(50% total)

Monitoring
Period

DC3 & DC4

Prod1
(5% total)

Monitoring
Period

Prod2
(20% total)

Monitoring
Period

Prod3
(50% total)

Monitoring
Period

Prod4
(100% total)

Monitoring
Period

Henrik Baerbak Christensen

Prod4
(100% total)

Monitoring
Period

17

/v

AARHUS UNIVERSITET

3: Real Project Progress

/v Windows Progress Metaphor

AARHUS UNIVERSITET

 The good old Windows progress bar
— Spent 8 seconds to reach 95%
— Spent 15 minutes to reach the last 5%

« S0 what does it mean to a project manager that
developers state that the software is 90% finished?

— Ifitis just development that is 90% done

* Never tested with users, never tested with real sized database
contents, never tested with 10.000 concurrent users, never tested for

« Humble: “Done” versus “Done done”
 Nygard: “feature complete versus production-ready”

/v Real Project Progress

AARHUS UNIVERSITET
« Burn down chart —
— http://brodzinski.com/2012/10/burn-up-better-burn-down.html Note: Using Mvp the
. 3Cope and progress
« Time graph « curve match more
closely.
— ScopeonY ‘
» Will evolve up (or down) B §E (7!
. A= (\v" o 2
— Time on X 2t
3!

— Plot ‘features in production’
* Blue line =real live features
» Dotted red = projection

T(1

Scope (points)
' R LS el st o

CS@AU Henrik Baerbak Christensen

http://brodzinski.com/2012/10/burn-up-better-burn-down.html

/v Summary

AARHUS UNIVERSITET
« Do it, In order to

« 1. Build the right thing

— Fast feedback from users, focus attention to aspects that deliver
value to them

« 2. Reduce risk of release
— Release often means you get very good at it

— Release often means broken release is easier to roll back, and
easier to find the defect

« 3. Show real project progress

— “Done” is not “Done-Done”
 Feature made = Done. Feature used = Done-Done

/v

AARHUS UNIVERSITET

Terminology

| find it muddles a bit...

/v Terminology

AARHUS UNIVERSITET

* Writing these slides, | found that | actually use terms like
— Deploy, Release, Delivery, Production

« ... in a rather unprecise way ®
— | deploy SkyCave? | release SkyCave? Put SkyCave in prod.?

« ... (and authors seems to mix it up a bit as well)

« S0 — What do you mean by
— Release x? Deploy x? Deliver x?

eV Humble: CD

AARHUS UNIVERSITET
Chapter 10. Deploying and Releasing Applications

Introduction

There are differences betweer| releasing software into pmductiun]an deploying it to testing
environments—not least, in the level of adrenaline in the blood of the person performing the
release. However, in technical terms, these differences should be encapsulated in a set of
configuration files. When deployment to production occurs, the same process should be
followed as for any other deployment. Fire up your automated deployment system, give it the
version of your software to deploy and the name of the target environment, and hit go. This same
process should also be used for all subsequent deployments and releases.

b :to placein battle formation or appropriate positions . i S
4 :to give permission for publication, performance,
/1 deploying troops to the region exhibition, or sale of

also : to make available to the public
// the commission released its findings

ource: Merriam Webster online dictionary // release a new movie

CS@AU Henrik Beerbak Christensen 24

VeV So...

AARHUS UNIVERSITET

* Deploy service
— Bring it in an executable form into a given environment
« Which may be a testing env or a production env
— (normally also means ‘and start its execution’)

* Release service

— Make its features available to the ‘public’ (customers)

« Which (almost) equate ‘deploy and start it on production env’
— Deliver ?
* (unless the feature is ‘toggled off by a feature toggle’)

https://www.martinfowler.com/articles/feature-toggles.html

CS@AU Henrik Baerbak Christensen 25

eV, Release Is not Release

AARHUS UNIVERSITET
* Perhaps because | am an old-school guy...

* In the old days release meant

— Tag a release tag onto a specific version and call that ‘the one to
use’

— Ala ‘upgrade your build.gradle to include frds.broker, v 1.14’

* Different from this notion of release...
— “Push release” versus “Pull release” ?

eV Newman Part Il

AARHUS UNIVERSITET

* (Newman: “Monolith to MicroService”, p 80)
— Deployment does not mean accessible by customers (!)
* |.e. not released; may run with no user load in production

— Released does not mean deployed in production (!)
* i.e. we have only released it in staging, for testing

* Martin Schmidt’'s Master’s Thesis, p 22

Continuous Deployment: Every commit to main branch results in
a new release.

Continuous Delivery: Ready and able to deploy any version to
any supported platform at any time.

CS@AU Henrik Baerbak Christensen

27

/v

AARHUS UNIVERSITET

The Pipeline Again

Just adding stages...

/v Pipeline
AARHUS UNIVERSITET
* Deployment Pipeline: An automated implementation of

your application’s build, test, deploy and release process.
Figure 1.1 The deployment pipeline

Commit stage .
Compile Automated Automated M'BST;?::}::;L_"Q
Unit test acceptance = capacity E:«enlo;.-llc"g.r Release
Analysis testing testing testin

Build installers esting

« Every change that is made in any artefacts of the
application triggers the creation of a new instance of the
pipeline.

— Series of tests, each more demanding, each giving confidence in
that it will work. Passing all tests means ready for release.

eV Production-Ready Software

AARHUS UNIVERSITET

« Automation of (almost) everything
— Software is put into production by the ‘push of a button’
— Software is always working (that is, services customers!)

e Collaboration
— DevOps
— Full stack developers

/v

AARHUS UNIVERSITET

* Deployment like a Processor pipeline
— Like our hero passing a series of test to marry the princess

Checkin Jenkins, Concourse, Go, etc.

Deployment Pipeline

That is, a clear set of

stages, moving towards
valuable software

3% ¥ e

CS@AU Henrik Beerbak Christensen 31

eV What Artefacts?

AARHUS UNIVERSITET
o Software service customers

— What is the ‘unit of deployment’?
_ _ Both need automation!
— What is the ‘execution context’?

« Units of deployment

— Ruby gems, Java jars and war, .NET dlls, Node.js npm, ...
— Ubuntu deb, CentOS RPM, Windows MSI, ...

e Execution context
— Apache tomcat, nagios, nginx, ...

CS@AU Henrik Baerbak Christensen 32

VeV Containers - as Artifacts

AARHUS UNIVERSITET

 The artefacts we use: Containers

 EXx: Docker container

— Provides execution context
 Ex: Ubuntu 18.04, Java8, Gradle

— Provides unit of deployment
 Ex: Cave daemon service

« Can be automatically built
— Dockerfile

« Can be released easily
— Docker push (imagename)

ﬁ The docker file to create T517D daemon as docker container
Note this version uses test doubles and is thus not a production variant
$# To test:

docker run -d -p 4666:4666 —-name t=z17d THISIMALGE

And start a local client -
Execution
gradle :tsl7d:cmd -Pcrh=uri / il

FROM henrikbaerbak/jdk8-gradle
MAINTAINER Henrik Bzrbak Christensen <hbclcs.au.dk>

$# Copy =source code into container
WCORKDIR /root/tsl7d

COPY broker/ broker/ LJr]it ()f

COPY tsl4/ tsl4/
COPY tsl7d/ talTd/

deployment

COPY gradle.properties gradle.properties
COPY settings.gradle settings.gradle

Expose the TS17d daemon port (Reuse the HITP version for simplicity)
EXPOSE 4866

Start the service; here a test doubled variant for easy deployment

CMD ["gradle™, ":tsl?&:daemon", "—Parh=uri™]
Service start

CS@AU Henrik Baerbak Christensen 33

/v Immutable Servers

AARHUS UNIVERSITET

~+ Reusing servers leads to Configuration drift

— Typically, someone logged into the host and changed some
parameters by fiddling

— Error in config? No fiddling, but fix configuration file, check-in,
instantiate deployment pipeline!

CS@AU Henrik Beerbak Christensen 34

eV Nygard

AARHUS UNIVERSITET

e ... says the very same

* Right, not always possible

— Example: Crunch machine needs configuring the Docker engine’s
network creation algorithm ®

CS@AU Henrik Beerbak Christensen 35

/v

AARHUS UNIVERSITET

« Do not security-patch a
container

— Instead, make a pipeline
stage that produce the
base image...

* Following stages will then

produce the service
container, based up the
updated base image

CS@AU

#T
#FT

Again: Container Technology

Jenkins enabled JDK8+Gradle

he docker file to create execution container for
517-D on a Jenkins CI server

FRCHM ubuntu:16.04
MAINTAINER Henrik Bzrbak Christensen <hbc@ecs.au.dk>

RUN apt-get -y update

RUN apt-get -y upgrade

RUN apt-get install -y openjdk-8-jdk

RUN apt-get install -y gradle

docker ce

RUN apt-get install -y apt-transport-https

RUN apt-get install -y ca-certificates

RUN apt-get install -y curl

RUN apt-get install -y software-properties—-common
RUN curl -f£s5L https://download.docker.com/linux/ubuntu/geg | apt-key add -
RUN add-apt-repository

RUN

RUN

"deb [arch=amdé4] https://download.docker.com/linux/ubuntu \
£{lsb_release -cs) \
stable”

apt-get -y update

apt-get install -y docker-ce

Henrik Baerbak Christensen 36

/v Environments and Configuration

AARHUS UNIVERSITET
« The execution environment must be configurable

- Development environment | Uil eSS

» Use test doubles for fast development of new features
« Fast unit-test execution

- Staging environment Service Tess, Joumneys |

* Drilled down production-like environment
— No firewall, fewer services
— Docker images, created by TestContainers
— Mountebank imposters instead of certain services

— Production environment

CS@AU Henrik Beerbak Christensen 37

/v Example

AARHUS UNIVERSITET
« SkyCave

— Dependency injection using AbstractFactory+ObjectMgr patterns
» Reading CPF property files

 Other recommendations

— Environment variables (is cross platform, but reuse difficult)
« And JUnit code cannot set it directly

— Injection frameworks (Spring, Guice, “Baerbak CPF ©”...)

/v Deployment Interface

AARHUS UNIVERSITET

* Three parameters

— Artifact what service to deploy
— Version ... In which version
— Environment ... In which service configuration ?

$ deploy artifact=tsl7d environment=production version=b456

docker run -d hbc/ts17d:b456 —-Pcpf=production.cpf

CS@AU Henrik Beerbak Christensen 39

VeV Humble

AARHUS UNIVERSITET
 Humble says something along the same lines...

Chapter 10. Deploying and Releasing Applications

Introduction

There are differences between releasing software into production and deploying it to testing
environments—not least, in the level of adrenaline in the blood of the person performing the
release. However, in technical terms, these differences should be encapsulated in a set of
configuration files. When deployment to production occurs, the same process should be
followed as for any other deployment. Fire up your automated deployment system, give it the
version of your software to deploy and the name of the target environment, and hit go. This same
process should also be used for all subsequent deployments and releases.

CS@AU Henrik Baerbak Christensen 40

/v Deployment Interface

AARHUS UNIVERSITET
« But how does It relate to l1aC?

+ Infrastructure-as-code S
— Codify your infrastructure

memory: 58

 EXxercise:

- Compare deployment interface = coemeie
— Artifact?
— Version?
— Environment?

CS@AU Henrik Baerbak Christensen 41

/v

AARHUS UNIVERSITET

S0 - the question is...
— |Is a deployment interface the same as laC

— If not
» Benefits of deployment interface?
« Liabilities?
» Benefits of 1aC?
* Liabilities?

CS@AU Henrik Baerbak Christensen

Discussion

42

- A GUI Depl-Intf: Rancher

AARHUS UNIVERSITET

¥ A Defaltv STACKSw CATALOGw INFRASTRUCTUREw ADMINw

Hosts

Scale

© Run 2 containers L
workerl worker2

@® Always run one instance of this container on every host

Stack: Stack:

daemon-2 10424027 skycave-loadbalancer-1 104223439 §

Standalone Containers Standalone Containers Name Description

o Add Containe 4 Add Containe Standalon|
daemon SkyCave Daemon

Select Image* Always pull image before creating

henrikbaerbak/private:mcd

@ Port Map
@Ser\;‘\(e Links

B> o

Point’n’Click hell ®

Command ant daemon -Depf=rancher.cpf

Entry Point

Henrik Baerbak Christensen

/v

AARHUS UNIVERSITET

 Fowler: PhoenixServer

— Burn all you production
equipment, and then measure the
time until you are completely back
In normal operations

PhoenixServer

